

# **APS Operations: Status and Update**

## **George Srajer**

APSUO/PUC Meeting September 17, 2014





# **AES Staffing Changes Effective September 1**

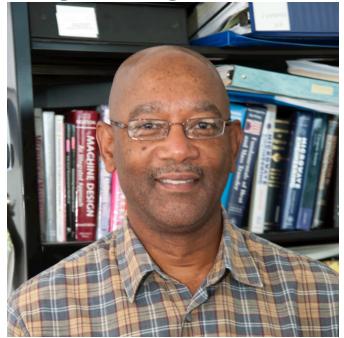








William Ruzicka


John Maclean

Richard Farnsworth

Ken Sidorowicz

- William Ruzicka moved to a new role handling special projects
- John Maclean became interim AES division director
- Richard Farnsworth and Ken Sidorowicz assumed additional duties within AES Computing Systems
  - Ken: Information Solutions and Software Services Groups
  - Richard: Beamline Control and Data Acquisition

## **AES Staffing Changes Effective October 1**



**Leonard Morrison** 

- Leonard Morrison new Group Leader of the Mechanical Operations and Maintenance (MOM) Group
- B.S. in Mechanical Engineering from Illinois Institute of Technology, Chicago, IL.
- Leonard succeeds George Goeppner who retired in May, 2014
- Many thanks go to Eugene Swetin for filling in as interim group leader during the transition period.

# **Operations Summary**

### For 2014-2 Run (Ended Aug. 26):

Mean Time Between Faults (MTBF): 69.3 hours

Availability: 97.56%

25 total faults

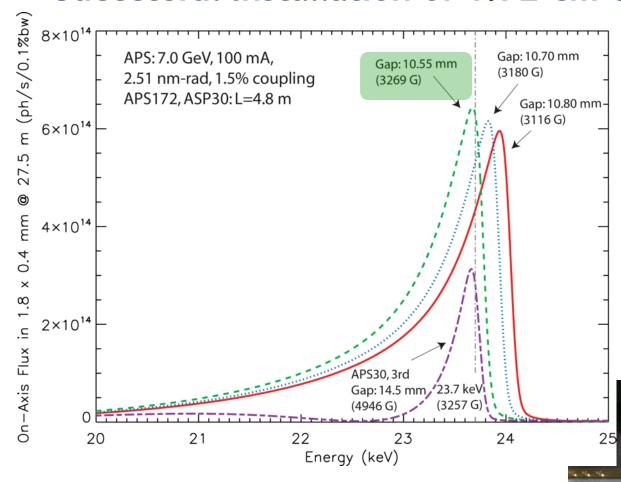
#### **FY14 To Date:**

MTBF: 121.9 hrs

Availability: 98.3%

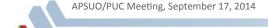
#### Last 3 years:

FY11-13 MTBF: 128.8 hours


FY11-13 Availability: 98.5%

Proactive accelerator team and robust QA program continue to deliver outstanding performance

## Successful Installation of 1.72-cm Undulators in 30-ID


1.72-cm undulator closed at 10.6 mm gap

Courtesy: John Grimmer



Calculated flux spectra near 23.7 keV of the 1.72-cm period undulator

Courtesy: Roger Dejus



# **Liquid Nitrogen Distribution System Improvements**

Two new super-sized LN2 tanks installed at 434 and 435, during the April-May maintenance shutdown.



Before - 3000 Gallon tank at 434



After - 9000 Gallon tank at 434

# Benefits of Tank and PLC Upgrades

The increased tank capacity reduces the number of deliveries needed, thus reducing the potential for delivery failures.

|                  | Tank Capacity | Module B | Module C |
|------------------|---------------|----------|----------|
| Fills March 2014 | 3000          | 30       | 33       |
| Fills June 2014  | 9000          | 5        | 7        |

One of the programming features of the new PLCs is an "Auto Recovery" routine. Auto Recovery opens up an Electric Keep Full valve to vent off excess gaseous N<sub>2</sub>, which helps prevent beamline drop valves from closing.

|            | Number Of Closes | Duration of Closes<br>in Minutes | Average     |
|------------|------------------|----------------------------------|-------------|
| March 2013 | 30               | 2 to 53                          | 19 minutes  |
| March 2014 | 3                | 5 to 8                           | 6.3 minutes |

# **Future Plans for Improvements**

- 1. The following are funding dependent:
- Installing additional automatic keep full valves to keep dead legs full of LN<sub>2</sub>
- Purge valves to purge dead legs of gas and contamination prior to opening the interconnect valves
- Extending the control system for the purge valves
- 2. A longer term possibility is:
- Consolidating the two 3,000-gallon tanks at 432 into one 9,000-gallon tank. This would save on monthly leasing costs, reduce the frequency of fills, and provide additional buffer capacity.

# **APS Low Temperature Heating Water System**

- System provides heating for the majority of the 400 area including technical systems.
- Piping is a mechanically coupled system consisting of elastomer gaskets and ductile iron housings.
  - We operate well within the gasket manufacture's recommended operating range.



# Piping Gasket Failures - Historical Background

- Gasket failures on the hot side of the system were noted in the late 1990's and occurred when system pressure and temperature were relaxed for maintenance operations.
- The manufacturer was notified and the cause was identified by Argonne to be gasket embrittlement and loss of elasticity due to temperature.
  - Further investigation by Argonne found that this was an industry wide problem traced back to improper curing of the EPDM gasket material.
- Argonne procurement negotiated a repair plan with the manufacturer that included replacement of all the gaskets that <u>had failed at that time</u> with new more robust gaskets.
  - These new, more robust, gaskets have been in place since 2002 and we have not had any reported failures to date.

# **Piping System Ongoing Repairs**

- Subsequent to the initial repair, additional failures have occurred in original gaskets on the lower temperature side of the system.
  - These have been addressed during maintenance shutdown periods
  - Approximately 40 percent of the systems joints have been remediated to date.



**Original Pipe Joints** 



Remediated Pipe Joints (showing welded connections)

- The total number of leaks reported during the recent heating system disruption was 65 (less than 5 % of the total system joints).
- This was many more than expected. An APS engineer was on-site over night, when the system was shut down, to identify leaks and mitigate problems.

## **Path Forward**

- Replacement and repairs will continue until all the existing joints have been remediated.
- This activity will take place during spring and summer shutdown periods.
- To accelerate the effectiveness of this activity, areas with leaks identified during this past shutdown will be given a priority for remediation.
  - Earliest possible plans for completion are October 2015, if funding is available.

# **Summary**

- Accelerator continues to deliver outstanding performance
- Decisions to be made on the Liquid Nitrogen Distribution System
- Repairs to Low Temperature Hot Water Supply ongoing
- Successfully installed 1.72-cm period undulators in 30-ID

